Comprehensive Monitoring and Boiler Performance

Comprehensive Monitoring and Boiler Performance

- What is Comprehensive Monitoring?
 - What we mean by "Comprehensive Monitoring"
 - Other forms of remote monitoring
- What is Boiler Performance?
- How can Comprehensive Monitoring help you know and improve Boiler Performance?

By "Comprehensive Monitoring," We Mean . . .

- Access to a <u>comprehensive</u> set of <u>all</u> parameters, variables, errors, states, I/O and all data points tracked by the boiler
 - Usually in the hundreds of points, sometimes over one thousand
- Access to this data from <u>any time</u> in its monitored history
- Graphical presentation of data
 - Tables deceive, graphs reveal
- Calculations of performance measures

Customize Graph

Other Monitoring Solutions

- Some manufacturers provide remote basic monitoring
 - Generally only 10-35 points (parameters, variables...)
 - Can monitor DHW, solar panels, heating zones
 - Can change parameters remotely
 - Limited data history; limited graphical representation tools
- Custom monitoring via BEMS of 10-20 data points

These are all useful tools, but are rarely helpful in understanding boiler performance

Comprehensive Monitoring and Boiler Performance

- What is Comprehensive Monitoring?
- What is Boiler Performance?
- How can Comprehensive Monitoring help you know and improve Boiler Performance?

Performance is the #1 Concern of Boiler Owners/Operators

Spring 2014 Fall 2014

Source: NH Wood Energy Council post-workshop surveys of #1 choice for future panels; top 3-4 vote recipients

Performance is the #1 Concern of Boiler Owners/Operators

Source: NH Wood Energy Council post-workshop surveys of #1 choice for future panels; top 4 vote recipients

What do you mean by performance?

10/23/2015 NH Wood Energy Council Workshop Participants on Boiler Performance

Our View: Performance is Cost and Effectiveness (Benefit)

We look at the performance of the <u>entire boiler plant</u>, not just individual boilers

Cost Components: Capital Cost

Monitoring not so helpful in understanding this cost

Installed cost of biomass boiler plant

Installed cost of thermal storage (if any)

Grants + incentives

Cost Components: Operating Cost

T-RECs, etc.

We Buy Commercial Boilers to Provide Steady Heat at a Certain Temperature

Heat Provided

Monitoring <u>ESSENTIAL</u> in understanding this benefit

Boiler Plant Effectiveness

Is water coming from the boiler plant at the right temperature?

Startup/shutdown time time*

Duty Cycle

Duty Cycle

Duty Cycle

Foundations of Boiler Plant Effectiveness

*If heating, startup, or shutdown is interrupted

NOTE: Proper Water Temperature to the Building May be a Better Measure of Effectiveness

- But that's not the boiler plant's job
 - Responsibility of building control system
 - Temperature required by building always changing because of outdoor reset, etc.
 - Hard for a boiler to know/log
- Therefore, we just look at temperature provided by boiler plant

Boiler Plant Effectiveness

Boiler Plant Effectiveness = (B + C)/(E) = % of time when Delivered Temperature ≥ (setpoint - 2.5°C)

OR

All boilers heating at > 95%

"Efficiency" is a Problematic Metric of Boiler Performance

- Results are more important than "efficiency"—if you run only 80 m of a 100 m event, it makes no sense to talk about efficiency over those 80 m
- The main purpose of a commercial boiler plant is to consistently provide water at a preset temperature
- How often you achieve this goal is more important than efficiency of operation
- Even if "efficiency" were a primary issue, current measures of thermal efficiency are steady-state figures that do not take into account real-world boiler operation

Comprehensive Monitoring and Boiler Performance

- What is Comprehensive Monitoring?
- What is Boiler Performance?
- How can Comprehensive Monitoring help you know and improve Boiler Performance?

For Operating Costs, Comprehensive Monitoring Helps You . . .

COST		<u>Know</u>	<u>Improve</u>	
	Fuel cost	X	✓	
	Maintenance	✓	/ *	*Especially cleaning
	Down time (measured in backup fuel)	✓	√	Respond to faults quickly
	Compliance	×	X	
	Environment	✓	✓	Minimize # of starts/stops
	Human oversight	✓	√	Helps onsite or offsite
	T-RECs, etc.	✓	/ *	*Especially cleaning

Cost

Clean Boilers Produce More Heat and More RECs

Monitoring Clearly Helps in Timely Fault Notification

Cos	t	

Display Full Error History for Boiler: 1 💸 for period selected above.				
Boiler 1				
Code	Name	Time		
1	Boiler temperature sensor faulty	2015-09-14 13:44:03 (GMT-5)		
1	Boiler temperature sensor faulty	2015-09-14 13:42:45 (GMT-5)		
1	Boiler temperature sensor faulty	2015-09-01 14:38:17 (GMT-5)		
1	Boiler temperature sensor faulty	2015-03-25 11:03:05 (GMT-5)		
1	Boiler temperature sensor faulty	2015-03-25 11:00:33 (GMT-5)		
169	"Ash box full, please empty"	2015-03-16 09:24:26 (GMT-5)		
1	Boiler temperature sensor faulty	2015-03-09 15:01:26 (GMT-5)		
14	Boiler door open too long	2015-03-06 06:37:11 (GMT-5)		
14	Boiler door open too long	2015-01-26 09:17:04 (GMT-5)		
169	"Ash box full, please empty"	2015-01-20 16:01:06 (GMT-5)		
14	Boiler door open too long	2015-01-05 14:37:54 (GMT-5)		
125	Motor protection delivery screw	2014-12-03 23:23:54 (GMT-5)		
169	"Ash box full, please empty"	2014-11-20 09:28:42 (GMT-5)		
13	"Safety time expired, flue gas temperature too low for too long"	2014-09-04 07:59:26 (GMT-5)		
14	Boiler door open too long	2014-07-23 07:10:31 (GMT-5)		
0	Overheat Thermostat (STL) or EMERGENCY OFF activated	2014-07-03 10:35:18 (GMT-5)		
58	Bus module faulty before power switched off	2014-05-05 12:24:54 (GMT-5)		
58	Bus module faulty before power switched off	2014-05-05 12:20:05 (GMT-5)		
169	"Ash box full, please empty"	2014-04-06 13:37:52 (GMT-5)		
0	Overheat Thermostat (STL) or EMERGENCY OFF activated	2014-04-06 13:37:35 (GMT-5)		
169	"Ash box full, please empty"	2014-04-05 18:06:17 (GMT-5)		

February 2015	All be	oilers	
Boiler Count	52		
Time in Fault	25d 9	9h	
Avg Time in Fault	11h		
Error Count	236		
Error Count / Boiler	4.5		
	ID	Time	Description
	16	6d 12h	Check fuel outfeeder
	5	2d 8h	Test combustion chamber overpressure monitor
Top By Time	6	2d 8h	Back-fire slide valve does not close
	2	2d 2h	Primary air flap blocked
	11	1d 23h	Ignition not successful

- Basic monitoring is just as fast with fault notification, BUT
- Comprehensive monitoring allows you to look up fault history and quantify boiler downtime

Not Sure How Long this Circulator Will Last . . .

Circulator pump oscillating between 100% and near 0%

Frequency of Starts and Stops Provides Clues about Emissions

 Transitional operating states around startups/ shutdowns most likely to produce high particulate emissions

Performance Measure	Boiler 1	Boiler 2
Service Hours	6994	7065
Hours of Heating	5834	5834
Number of Burner Starts	2336	2420
Heating Hours per Start	2.50	2.41

Cost

Human Oversight Should Be An Important Cost of Boiler Operation

- For boiler plants with a boiler operator, it already is
- Facilities without dedicated operator may not see human oversight of boiler as important
- <u>BUT</u>: 5-15% of school plant operations and maintenance budgets go to heating fuel alone*
- → Boiler oversight <u>SHOULD</u> be an important part of facilities management
- → Comprehensive monitoring enables low-cost boiler oversight

*Keene NH, Williamstown VT, East Montpelier VT, Harwood Union HS (VT) budget data

Boiler Plant Effectiveness is Dependent on Delivered Water Temperature

Boiler Plant Effectiveness

Monitoring helps you . . .

Know Improve

Boiler Plant Effectiveness Scores

Vary Considerably

Source: A selection of boilers plants monitored by DCM Logic; each bar represents one boiler plant

High Score: Graphs Can Also Help in Visually Assessing Effectiveness

This Boiler Has a Lower Boiler Plant Effectiveness

 Firing rate remains constant at ~60% even though a significant deviation from the setpoint has occurred for 45 minutes

Know Your Duty Cycle Profile

Duty Cycle = heating hours/operating hours (Measured Duty Cycle)
 Or, Duty Cycle = Heating time/(heating + startup + shutdown + cleaning*)
 *if it doesn't occur at the same time as another part of cycle

Higher duty cycle percentages mean that your boiler can provide useful heat for a higher percentage of the hours in a day (month)

How Does Your Duty Cycle Stack

Why is Duty Cycle Important?

- It tells you how much of your boiler's rated capacity is <u>actually</u> available to you over time
 Duty Cycle x Rated Capacity = Effective Capacity
 - "Rated Capacity" is overrated!
 - → Use Measured Duty Cycle to calculate Effective Capacity, not the Theoretical Duty Cycle
 - → When sizing, keep Effective Capacity in mind

Theoretical Duty Cycle Different fromMeasured Duty Cycle


```
<u>Max runtime between cleanings</u> = Theoretical Duty Cycle (Max runtime + startup + shutdown + cleaning)
```

Heating Hours
Operating Hours

= Measured Duty Cycle

- Most boilers we monitor lag behind their Theoretical Duty Cycle by about 10% points
- Very highest performing boilers have Measured Duty Cycles within 1-2% points of Theoretical Duty Cycle

Heating Hours Per Start Vary Greatly

Graphs Also Show Short Cycling

Boiler/Buffer Temps

Pellet Feed Rate

Each vertical line = 1 boiler startup

Know Your Startup and Shutdown Times

- Long startup/shutdown times make it difficult to maximize heating time
- All the more critical to minimize short cycling with long startup/shutdown times

Very Long Shutdown

2 Boilers: Runtime Interrupted by

Uninterrupted Heating Cycles

This Seems Like a Lot of Work. Do I Really Need to Monitor My Boiler?

- 5-15% of school plant operations and maintenance budgets go to heating fuel alone
- Biomass boiler capital costs are high and often require an extensive and public approval process
- Your boiler is already collecting data, so additional monitoring costs are not high
- → You owe it to your organization and community to keep track of how your boiler is performing

Yes—You <u>Do</u> Need to Look at Graphs and Boiler Performance Measures

- For most facilities managers or boiler operators, it makes sense to do this daily
- Your installer/manufacturer/distributor can help
- Know your boiler's startup/shutdown times and performance measures
- If you don't have comprehensive monitoring tools, ask your installer or manufacturer

Comprehensive Monitoring and Boiler Performance

